8 research outputs found

    Primary Antiretroviral Drug Resistance among HIV Type 1-Infected Individuals in Brazil

    No full text
    Infection with drug-resistant human immunodeficiency virus type 1 (HIV-1) has been documented in all countries that have surveyed for it and may result in an unfavorable response to therapy. the prevalence and characteristics of individuals with transmitted resistance to antiretroviral drugs have been scarcely described in Brazil. We performed antiretroviral resistance testing prior to initiation of therapy in 400 subjects enrolled from 20 centers in 13 Brazilian cities between March and September 2007. Genotyping was conducted using PCR-amplified HIV pol products by automated sequencing, and genotype interpretation was done according to the IAS-USA consensus. of 400 eligible participants, 387 (95.8%) were successfully tested. Seven percent of antiretroviral-naive patients carried viruses with one or more major mutation associated with drug resistance. the prevalence of these mutations was 1.0% for protease inhibitors, 4.4% for nonnucleoside reverse transcriptase inhibitors, and 1.3% for nucleoside reverse transcriptase inhibitors. the frequency of multidrug resistance among the resistant strains was 13.6%. Among subjects infected with drug-resistant virus, the majority were infected with subtype B viruses (91%). Subjects from the city of São Paulo had higher transmitted resistance mutations compared to the rest of the country. Reporting a partner taking antiretroviral medications was associated with a higher chance of harboring HIV variants with major drug resistance mutations [odds ratio = 2.57 (95% confidence interval, 1.07-6.16); p = 0.014].Resistance testing in drug-naive individuals identified 7% of subjects with mutations associated with reduced susceptibility to antiretroviral drugs. Continued surveillance of drug-resistant HIV-1 in Brazil is warranted when guidelines for HIV prophylaxis and treatment are updated. Resistance testing among drug-naive patients prior to treatment initiation should be considered, mainly directed at subjects whose partners are already on antiretroviral therapy.Laboratorio Pfizer do BrasilUniv Fed Rio Grande do Sul, Hosp Clin, Porto Alegre, RS, BrazilHosp Univ Prof Edgard Santos, Salvador, BA, BrazilPontificia Univ Catolica, Hosp & Maternidade Celso Pierro, Campinas, SP, BrazilHosp Heliopolis, São Paulo, BrazilInst Infectol Emilio Ribas, São Paulo, BrazilProjeto Praca Onze, Rio de Janeiro, BrazilCRT AIDS, São Paulo, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilUniv Estadual Campinas, Campinas, SP, BrazilUniv Fed Rio de Janeiro, Rio de Janeiro, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilWeb of Scienc

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure : A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    No full text
    Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20–29 years to 70–79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probit-transformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005–16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the high-income Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    No full text
    Background Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20–29 years to 70–79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probit-transformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results In 2005–16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the high-income Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    A century of trends in adult human height

    No full text
    International audienc

    Worldwide trends in blood pressure from 1975 to 2015:a pooled analysis of 1479 population-based measurement studies with 19.1 million participants

    No full text
    Abstract Background: Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher. Methods: For this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure. Findings: We pooled 1479 studies that had measured the blood pressures of 19.1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127.0 mm Hg (95% credible interval 125.7–128.3) in men and 122.3 mm Hg (121.0–123.6) in women; age-standardised mean diastolic blood pressure was 78.7 mm Hg (77.9–79.5) for men and 76.7 mm Hg (75.9–77.6) for women. Global age-standardised prevalence of raised blood pressure was 24.1% (21.4–27.1) in men and 20.1% (17.8–22.5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1.13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence. Interpretation: During the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe

    Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults

    No full text
    corecore